
Structure and Rotational Isomerism of Chloroacetyl Chloride Molecules

V. P. Feshin* and G. B. Soifer**

* Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, ul. Lenina 13, Perm, 614990 Russia ** Perm State University, Perm, Russia

Received February 28, 2005

Abstract—The structure of chloroacetyl chloroide (CH₂ClCOCl) molecule in different conformations arising from rotation of the CH₂Cl group about the C–C bond was determined by the Hartree–Fock RHF/6-31G(d) quantum-chemical calculations. The energy difference between the two stable rotamers was estimated at 5.9 kJ mol⁻¹, and barriers to intramolecular reorientations of the CH₂Cl group were calculated. **DOI:** 10.1134/S1070363206030042

We previously [1] studied the structure and internal rotation of trichloroacetyl chloride molecule (CCl₃·COCl) by nonempirical quantum-chemical calculations. Reorientation of the trichloromethyl group about the C–C bond was found to be described in terms of a threefold equal-well potential. The goal of the present study was to elucidate the shape of potential curve for the rotational motion of the partly chlorinated methyl group in chloroacetyl chloride (CH₂ClCOCl, I) and determined the corresponding structural and energetic parameters of its molecule.

According to the experimental data obtained by the gas-phase electron diffraction method [2], chloroacetyl chloride exists as two rotational isomers, *cis* and *gauche*, the first of these being more stable. The same conclusion was drawn previously [3–7] from the data of optical and microwave spectroscopy.

In order to determine the geometric parameters of molecule **I** in equilibrium and transition states arising from rotation of the CH₂Cl group about the C–C bond and the potential barriers separating these states, we performed nonempirical quantum-chemical calculations of the chloroacetyl chloride molecule on the Hartree–Fock level (RHF) using the 6-31G(d) basis set. The calculations were performed with the aid of Gaussian-94W software [8]. The atoms in molecule **I** were numbered as follows:

$$Cl^1$$
 H^2
 C^1
 C^2
 Cl^2

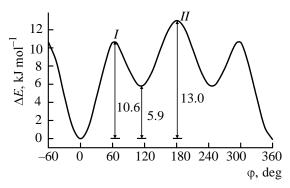
The results showed that the most stable conformer of I is characterized by eclipsed orientation of the

C¹-Cl¹ and C²=O bonds, the dihedral angle Cl¹C¹C²O (φ) being equal to zero. This *cis* structure is characterized by a symmetry plane which includes the C¹-Cl¹, C¹-C², C²=O, and C²-Cl² bonds (see table). The corresponding geometric parameters are given in the table together with those obtained experimentally by gas-phase electron diffraction [2] and calculated by molecular mechanics [9]. On the whole, the data obtained by different methods do not contradict each other, but an underestimated C=O bond length determined by the RHF/6-31G(d) calculations should be noted (this is consistent with the known [1, 10–13] tendency of that procedure as applied to carbonyl group).

The structure and energy parameters of rotational isomers of **I** were calculated by varying the angle φ from 0° (major cis conformer) to 360° through a step of 15° with optimization of all other geometric parameters at each fixed value of φ . As a result, we obtained potential function $\Delta E(\varphi)$ for internal rotation, where ΔE is the relative energy of the molecule, i.e., the difference between the total energy at a given value of φ and its minimal value (at $\varphi = 0^{\circ}$, see figure). Insofar as the potential curve in the φ range from 0° to 360° is symmetric relative to the vertical line passing through the point $\varphi = 180^{\circ}$, the energy parameters are given in the figure only for the φ range from 0° to 180° inclusively.

It is seen that rotation of the CH_2Cl group in molecule **I** is described by orientational potential with unequal wells and a global minimum at $\varphi = 0^{\circ}$, which corresponds to the most stable *cis* conformer. The local minimum at $\varphi = 113^{\circ}$ is occupied by the less stable *gauche* conformer. The energy difference

Bonds lengths (d, Å), bond angles (ω, deg) , torsion angles (τ, deg) , and total energies (E) of chloroacetyl chloride (I) in equilibrium (cis and gauche conformers) and transition states, calculated by the RHF/6-31G(d) method, determined experimentally by gas-phase electron diffraction [2], and calculated by molecular mechanics [9]


Parameter	RHF				Gas-phase	Molecular mechanics	
	cis	transition state I	gauche	transition state II	electron diffraction ^a	cis	gauche
			Bond		T		T
$C^{1}-C^{2}$	1.513	1.520	1.516	1.524	1.521	1.508	1.508
C^1 – Cl^1	1.765	1.777	1.777	1.765	1.782	1.780	1.780
C^1 – H^1	1.079	1.075	1.078	1.079	1.062	1.096	1.096
C^1 – H^2	1.079	1.079	1.077	1.079	1.062	1.096	1.096
C^2 –O	1.163	1.166	1.168	1.170	1.182	1.186	1.186
C^2 – Cl^2	1.775	1.766	1.761	1.749	1.772	1.799	1.799
·	·		ω angle		•		
$Cl^1C^1C^2$	112.5	110.3	111.6	118.2	112.9	112.2	112.2
$H^1C^1C^2$	108.9	112.1	110.4	106.5		110.3	109.5
$H^2C^1C^2$	108.9	107.7	107.6	106.5		110.4	110.4
$Cl^1C^1H^1$	109.0	108.3	108.0	108.5		107.5	107.5
$Cl^1C^1H^2$	109.0	107.9	108.4	108.5		107.5	108.2
$H^1C^1H^2$	108.6	110.5	110.9	108.4	109.5	109.2	108.6
C^1C^2O	128.4	124.8	124.2	119.7	126.9	126.6	127.2
$C^1C^2Cl^2$	110.3	114.0	114.5	119.2	110.0	113.1	112.5
			τ angle				
$Cl^1C^1C^2O$	0.0	64.0	113.0	180.0	0.0 and 116.4	0.0	119.7
$Cl^1C^1C^2Cl^2$	180.0	-117.3	-68.9	0.0			
$H^1C^1C^2O$	120.9	-175.3	-126.9	-57.8			
$H^2C^1C^2O$	-120.9	-53.5	-5.8	57.8			
		Total energy	of the molecul	e - (E + 1070),	au		
	0.721454	0.717432	0.719211	0.716518		<u> </u>	<u> </u>

^a The parameters of both conformers, except for the dihedral angle τ, were assumed to be equal.

between these conformers is 5.9 kJ mol⁻¹, and the barrier from the deepest potential well is 10.6 kJ mol^{-1} (transition state I at $\varphi = 64^{\circ}$). The barriers separating the local minimum from the global minimum and the other local minimum (see figure) were estimated at 4.7 and 7.1 kJ mol⁻¹, respectively. Transition state II located at $\varphi = 180^{\circ}$ and corresponding to an appreciably higher barrier between the local minima is characterized by eclipsed orientation of the C^1 – Cl^1 and C^2 – Cl^2 bonds, which gives rise to the strongest repulsion between the two chlorine atoms and hence to the maximal total energy (see figure and table). The Cl^1C^1 and $Cl^2C^2C^1$ angles in transition state II are larger by 6° – 9° than the corresponding angles in the main equilibrium state (cis conformer).

The potential curve for internal rotation shown in figure has a shape similar to those found previously for molecule \mathbf{I} by the gas-phase electron diffraction method and molecular mechanics calculations [2, 9].

While comparing the results of the present study with the data of [2, 9], similarity in φ values corresponding to the equilibrium and transition states of molecule **I** upon rotation of the CH₂Cl group about the C–C bond should be noted. The differences in the energies of the *cis* and *gauche* conformers are also small:

Torsion potential of the chloroacetyl chloride molecule vs. the angle $\varphi(Cl^1C^1C^2O)$.

5.9 kJ mol⁻¹ (our data) and 5.5 [2] and 4.2 kJ mol⁻¹ [9]. A comparable difference in the energies of these conformers (4.0 kJ mol⁻¹) was reported for molecule **I** in [6].

We can conclude that the geometric and energy parameters of rotational isomers of chloroacetyl chloride, calculated in the present work by the RHF/6-31G(d) nonempirical method, are consistent with the data obtained by other methods. On the other hand, the results of our calculations provide a more complete information on rotational isomerism of chloroacetyl chloride due to rotation of the ClCH₂ group about the C-C bond.

REFERENCES

- 1. Feshin, V.P. and Soifer, G.B., *Russ. J. Gen. Chem.*, 2003, vol. 73, no. 8, p. 1271.
- 2. Steinnes, O., Shen, Q., and Hagen, K., *J. Mol. Struct.*, 1980, vol. 64, p. 217.
- 3. Nakagawa, I., Ichishima, I., Kuratani, K., Miyazawa, T., Shimanouchi, T., and Mizushima, S., *J. Chem. Phys.*, 1952, vol. 20, no. 11, p. 1720.
- 4. Bellamy, L.J. and Williams, R.L., *J. Chem. Soc.*, 1958, no. 10, p. 3465.
- Khan, A.Y. and Jonathan, N., J. Chem. Phys., 1969, vol. 50, no. 4, p. 1801.

- 6. Tanabe, K. and Saëki, S., *Spectrochim. Acta, Part A*, 1972, vol. 28, no. 10, p. 1083.
- 7. Van Eijck, B.P. and Kaleveld, E.W., *J. Mol. Struct.*, 1976, vol. 34, p. 161.
- Frisch, M.J., Trucks, G.W., Schlegel, H.B., Gill, P.M.W., Johnson, B.G., Robb, M.A., Cheeseman, J.R., Keith, T., Petersson, G.A., Montgomery, J.A., Raghavachari, K., Al-Laham, M.A., Zakrzewski, V.G., Ortiz, J.V., Foresman, J.B., Cioslowski, J., Stefanov, B.B., Nanayakkara, A., Challacombe, M., Peng, C.Y., Ayala, P.Y., Chen, W., Wong, M.W., Andres, J.L., Replogle, E.S., Gomperts, R., Martin, R.L., Fox, D.J., Binkley, J.S., Defrees, D.J., Baker, J., Stewart, J.P., Head-Gordon, M., Gonzalez, C., and Pople, J.A., GAUSSIAN-94. Rev. E.3, Pittsburgh: Gaussian, 1995.
- 9. Fausto, R. and Teixeira-Dias, J.J.C., *J. Mol. Struct.*, 1986, vol. 144, p. 225.
- Durig, J.R., Phan, H.V., Little, T.S., and Van der Veken, B.J., *J. Mol. Struct. (Theochem)*, 1989, vol. 202, p. 143.
- 11. Durig, J.R., Davis, J.F., and Guirgis, G.A., *J. Raman Spectrosc.*, 1994, vol. 25, no. 2, p. 189.
- 12. Feshin, V.P. and Kon'shin, M.Yu., *Russ. J. Gen. Chem.*, 1996, vol. 66, no. 6, p. 922.
- 13. Bataev, V.A. and Godunov, I.A., *Zh. Fiz. Khim.*, 2000, vol. 74, no. 1, p. 103.